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a b s t r a c t

A wide number of real word applications presents a class distribution where examples belonging to one
class heavily outnumber the examples in the other class. This is an arduous situation where standard
classification techniques usually decrease their performance, creating a handicap to correctly identify the
minority class, which is precisely the case under consideration in these applications.

In this work, we propose the usage of the Iterative Instance Adjustment for Imbalanced Domains
(IPADE-ID) algorithm. It is an evolutionary framework, which uses an instance generation technique,
designed to face the existing imbalance modifying the original training set. The method, iteratively learns
the appropriate number of examples that represent the classes and their particular positioning. The
learning process contains three key operations in its design: a customized initialization procedure, an
evolutionary optimization of the positioning of the examples and a selection of the most representative
examples for each class.

An experimental analysis is carried out with a wide range of highly imbalanced datasets over the proposal
and recognized solutions to the problem. The results obtained, which have been contrasted through non-
parametric statistical tests, show that our proposal outperforms previously proposed methods.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Classification with imbalanced datasets is a challenging data
mining problem that has attracted a lot of attention in the last years
[1,2]. This problem is extremely important since it is predominant in
many real-world data mining applications including, but not limited
to, medical diagnosis, fraud detection, finances, network intrusion
and so on. These applications feature samples from one class which
are greatly outnumbered by the samples of the other class. Usually,
the minority class is the most interesting class from the learning
point of view and implies a higher cost of making errors [3,4].

Imbalanced datasets have become an important difficulty to
most classifiers, which assume a nearly balanced class distribu-
tion [5]. Standard classifiers are developed to minimize a global
measure of error, which is independent of the class distribution
and causes a bias towards the majority class, paying less attention
to the minority class. Consequently, classifying the minority
class is more error prone than classifying the majority class, as a
huge portion of errors are concentrated in the minority class [6].
ll rights reserved.
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Furthermore, the examples of the minority class can be treated as
noise and they might be completely ignored by the classifier.

Numerous approaches have been suggested to tackle the problem
of classification with imbalanced datasets [1,2,7]. These approaches
are developed at both data and algorithm levels. Solutions at the
algorithm level modify existing learning algorithms conducting its
operations on the improvement of the learning on the minority class
[8,9]. Solutions at the data level, also known as data sampling, try to
modify the original class distribution in order to obtain a more or less
balanced dataset that can be used to correctly identify each class
with standard classifiers [10–12].

The use of instance reduction methods [13], which were originally
designed for other preprocessing purposes (speed up, noise tolerance
and reduction of storage requirements of learning methods [14]), can
also be applied to imbalanced datasets [15,16] as a data level solution
that is used to find a balance between the minority and the majority
classes. It is important that instance reduction methods adapt their
bias to this situation to obtain high performances.

An instance reduction process is devoted to find the best
reduced set that represents the original training data with a lesser
number of instances. This methodology can be divided into
Instance Selection (IS) [13,17,18] and Instance Generation (IG)
depending on how it creates the reduced set [19,20]. The former
process attempts to choose an appropriate subset of the original
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training data, while the latter can also build new artificial
instances to better adjust the decision boundaries of the classes.
In this manner, the IG process fills some regions in the domain
of the problem, which have no representative examples in the
original dataset. IS methods have been applied to imbalanced
datasets with promising results [15,16,21], however, to the best of
our knowledge, IG techniques have not been used yet to deal with
imbalanced classification problems.

Following the idea of IG techniques, we propose the usage of the
Iterative Instance Adjustment for Imbalanced Domains (IPADE-ID)
algorithm to deal with highly imbalanced datasets. IPADE-ID is a
method inspired by the IG technique IPADE [22,23], that tries to
obtain an adequate synthetic training set from the original training
set following an incremental approach to determine the most
appropriate number of instances per class. The proposal is based in
three fundamental operations: a customized initialization procedure,
an evolutionary adjustment of the prototypes and the selection of the
most representative examples to define the classes. The initialization
procedure should be befitting to the specific learning algorithm used
with IPADE-ID.

In this work, we choose the Nearest Neighbor (NN) rule [24]
and the C4.5 algorithm [25] as learning methods. In this way,
we provide suitable initialization procedures for IPADE-ID that
matches these learning approaches. At each step, an optimization
procedure, based on an adaptive differential evolution algorithm
[26–28], adjusts the positioning of the instances generated up to
now, and a selection procedure adds new instances if needed. This
selection procedure has been particularly designed to consider
the existing imbalanced scenario focusing on the performance of
the minority class. This informed and organized combination
of techniques, leads us to a hybrid artificial intelligent system
[29,30] that is able to cope with imbalanced datasets.

In order to analyze the performance of the proposal, we focus
on highly imbalanced binary classification problems, having
selected a benchmark of 44 problems from KEEL dataset reposi-
tory1 [31]. We will perform our experimental analysis focusing on
the precision of the models using the Area Under the ROC curve
(AUC) [32]. This study will be carried out using non-parametric
statistical tests to check whether there are significant differences
among the results [33,34].

The rest of the paper is organized as follows. In Section 2, some
background about classification with imbalanced datasets and
instance generation techniques is given. Next, Section 3 introduces
the proposed approach. Sections 4 and 5 describe the experimental
framework used and the analysis of results, respectively. Finally, the
conclusions achieved in this work are shown in Section 6.
2. Background

This section purpose is to provide the background information
needed to describe our proposal. It is divided in two parts: a
description of instance generation techniques (Section 2.1) and
an introduction to the problem of classification with imbalanced
datasets (Section 2.2).

2.1. Instance generation techniques

This section presents the definition and notation for instance
generation techniques.

A formal specification of the instance generation problem is the
following: Let xp be an example where xp ¼ ðxp1; xp2;…; xpD;CpÞ,
with xp belonging to a class Ci given by Cp and a D-dimensional
1 http://www.keel.es/datasets.php.
space in which xpj is the value of the j-th feature of the p-th
sample. Then, let us assume that there is a training set TR which
consists of n instances xp and a test set TS composed of t instances
xq, with Cq unknown.

The original purpose of IG is to obtain an instance generated set
(GS), which consists of r, ron, instances pu where pu ¼ ðpu1;
pu2;…; puD;CuÞ, which are either selected or generated from the
examples of TR. The instances of the generated set are determined
to efficiently represent the distributions of the classes and to
discriminate well when used to classify the training objects.

This methodology, also known as instance abstraction, has
been widely studied in the specialized literature focusing on the
NN rule [24] as target classifier. These techniques follow multiple
mechanisms to generate an appropriate GS, such as interpolations
between instances, movements of instances and artificial genera-
tion of new data. Using the taxonomy proposed in [20], they can
be divided into several families depending on the main heuristic
operation: positioning adjustment [35], class re-labeling [36],
centroid-based [19] and space-splitting [37].

Among these families of methods, the algorithms that are
based on the adjustment of the position of the instances were
highlighted as outstanding methods in [20]. This methodology
can be viewed as an optimization process of the positioning of
the instances [38]. The precursor algorithm of this family is the
learning vector quantization proposed by Kohonen [39]. One of the
most recent and promising algorithms is the model presented in
[22], called IPADE, which follows an incremental addition process
of instances to determine which classes need more instances to be
represented and their best locations.

More information about instance generation approaches (and
instance reduction approaches in general) can be found at the SCI2S
thematic public website on Prototype Reduction in Nearest Neighbor
Classification: Prototype Selection and Prototype Generation.2

2.2. Imbalanced datasets in classification

In this section we delimit the context in which this work is
content, briefly introducing the problem of imbalanced classifica-
tion. Then, we will describe which approaches are used to deal with
this problem, giving special importance to data level approaches
that modify the class distribution. We finish this section describing
the evaluation metrics that are used in this specific problem with
respect to the most common ones in classification.

2.2.1. The problem of imbalanced datasets
In some classification problems, the number of instances that

belong to each class is radically different [1,2]. The problem of
classification with imbalanced datasets has acquired much rele-
vance in the last time due to its presence in abundant real-world
applications such as medical diagnosis [40], finances [41,42],
anomaly detection [43] or bioinformatics [44] just naming some
of them. Furthermore, the underrepresented class is usually the
most interesting class from the learning point of view incorporat-
ing high costs when it is not correctly identified [3,4].

In this paper, we focus on two-class imbalanced datasets,
where there is a positive (minority) class, with the lowest number
of instances, and a negative (majority) class, with the highest
number of instances. Although this class distribution is frequent in
real data mining problems, standard classifiers are not usually able
to cope with the correct identification of positive samples. Fre-
quently, standard classifiers are biased towards the majority class
as they are guided by global performance measures, selecting
more general rules that cover as many samples as possible and
2 http://sci2s.ugr.es/pr/.
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Fig. 2. Dataset with high imbalance (IR¼9.15).
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disregarding more specific rules that cover few samples (and
mostly describe the minority class). Furthermore, samples from
the minority class are often ignored by standard classifiers as they
are treated as noise.

To organize the datasets according to the degree of imbalance
we use the imbalance ratio (IR) [45], defined as the ratio of the
number of instances from the negative class and the positive class.
The performance of algorithms is usually more degraded when the
imbalance increases because positive examples are more easily
forgotten. That situation is critical in highly imbalanced datasets
because the number of positive instances in the dataset is
negligible and that situation increases the difficulty that most
learning algorithms have in detecting positive regions. There is no
consensus in the literature about when a dataset is considered
highly imbalanced or not. We consider that a dataset presents a
high degree of imbalance when its IR is higher than 9 (less than a
10% of instances of the positive class), due to the fact that ignoring
the minority class instances by a classifier supposes an error of
0.1 in accuracy, a point where it starts to become acceptable. Figs. 1
and 2 depict two datasets with low imbalance and high imbalance
respectively.

Traditionally, the IR is the main hint to identify a set of
problems which need to be addressed in a special way. However,
there are several data intrinsic characteristics that difficult the
learning when they appear together with a skewed class distribu-
tion, increasing more the difficulty to correctly solve the problem
than in separate contexts. These data intrinsic characteristics
include the overlapping between classes [46], lack of representa-
tive data [47], small disjuncts [6,48], dataset shift [49], presence of
borderline and noisy instances [50] and other issues which have
interdependent effects with data distribution (imbalance).

2.2.2. Addressing classification with imbalanced datasets
The problem of classification with imbalanced datasets has

been solved using different strategies, developed at both data and
algorithm levels. The goal of solutions at the data-level is to obtain
a more or less balanced class distribution that lets a standard
classifier perform in a similar manner as in a balanced scenario. In
order to do so, solutions at the data level can be categorized as
undersampling methods, oversampling methods or hybrid meth-
ods. Undersampling methods [51] create a subset of the original
dataset by deleting some of the examples of the negative class;
oversampling methods [10] create a superset of the original
dataset by replicating some of the examples of the positive class
or creating new ones from the original positive class instances;
and hybrid methods [11] integrate both approaches into one,
deleting some of the examples after the application of the over-
sampling method in order to remove the induced overfitting.
Fig. 1. Dataset with low imbalance (IR¼2.23).
Solutions at the algorithm level [8,9] try to modify existing
learning algorithms in order to bias the learning process towards a
correct identification of the positive class instances. Cost-sensitive
learning solutions incorporating both the data and algorithmic
level approaches assume higher misclassification costs with
samples in the positive class and seek to minimize the high cost
errors [3,4].

The main advantage of data level solutions is that they are
more versatile, since their use is independent of the classifier
selected. Furthermore, we may preprocess all datasets before-
hand in order to use them to train different classifiers. In this
manner, the computation time needed to prepare the data is only
required once.

Among the oversampling techniques used to deal with the
imbalanced classification problem, the Synthetic Minority Over-
sampling Technique (SMOTE) [10] algorithm is a well-known
reference in the area. In this method the positive class is over-
sampled by taking each positive class sample and introducing
synthetic examples along the line segments joining any/all of the k
positive class nearest neighbors.

From the SMOTE algorithm several alternatives have arisen
from its way of working. One of the most direct variants of SMOTE
is the SMOTE+Edited Nearest Neighbor (SMOTE+ENN) [11], a
hybrid data sampling method where SMOTE is applied with the
Wilson's ENN rule [52]. This alternative has shown a very robust
behavior among many different situations. Borderline-SMOTE [53]
is another approach based on the synthetic generation of instances
proposed in SMOTE. In this case, only the positive examples that
lie near the decision boundaries (the borderline) are used to
oversample the positive class. In ADASYN [54], the classification
decision boundary is adaptively shifted toward the difficult exam-
ples using a weighted distribution for different minority class
examples according to their level of difficulty in learning. Safe-
Level-SMOTE [55] is another approach that modifies how the
SMOTE algorithm works. This approach, modifies the position
where the synthetic positive examples are generated, being the
new instances closer to the other positive instances than in the
original approach.

From the undersampling point of view, we can observe the
usage of traditional data cleaning techniques for this purpose.
In general, these techniques performance do not correlate their
results to the imbalanced area, however, some of them like the
Neighborhood Cleaning Rule (NCL) [51] have obtained good results
in this scenario [11]. Following this idea several evolutionary
algorithms have been used for this purpose [21]. Specifically, we
can observe the usage of several proposals with determined
algorithms: Evolutionary Sampling [56] is used over C4.5 and
Ripper [57], where a search for the best parameters and selection
of instances is performed. EUSCHC [15,21,58] was initially



Fig. 3. Example of an ROC plot. Two classifiers are represented: the solid line is a
good performing classifier whereas the dashed line represents a random classifier.
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proposed to be used with the NN rule, however, later studies
demonstrated its effectiveness in rule learners such as C4.5 and
PART [59]. Other uses of evolutionary algorithms with under-
sampling purposes [12] can be done over nested generalized
exemplar learning techniques [60] where several significant mod-
ifications to the exemplar-based learning model are performed.

In this work we have developed an algorithm that focus its
novelty and main features to solve the imbalanced classification
problem from the a data level point of view, however, this
data level approach modifies its behavior according to the used
classifier introducing different operations into its way of work-
ing accordingly. In this manner, the current method cannot be
viewed as a traditional preprocessing approach for imbalanced
classification as it is not independent of the base classified
selected and it is not advisable to use the preprocessed datasets
before-hand without knowing the learner that will be used in a
subsequent stage.
2.2.3. Evaluation in imbalanced domains
The measures of the quality of classification are built from a

confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class.

The most used empirical measure, accuracy (1), does not
distinguish between the number of correct labels of different
classes, which in the ambit of imbalanced problems may lead to
erroneous conclusions. For example a classifier that obtains an
accuracy of 90% in a dataset with an IR value of 9, might not be
accurate if it does not cover correctly any positive class instance.

Acc¼ TP þ TN
TP þ FN þ FP þ TN

ð1Þ

One appropriate metric that could be used to measure the
performance of classification over imbalanced datasets is the
Receiver Operating Characteristic (ROC) graphics [61]. In these
graphics the tradeoff between the benefits and costs can be
visualized. They show that any classifier cannot increase the
number of true positives without also increasing the false posi-
tives. The Area Under the ROC Curve (AUC) [32] corresponds to the
probability of correctly identifying which of the two stimuli is
noise and which is signal plus noise. AUC provides a single-
number summary for the performance of learning algorithms.

The way to build the ROC space is to plot on a two-dimensional
chart the true positive rate (Y-axis) against the false positive rate
(X-axis) as shown in Fig. 3. The points (0, 0) and (1, 1) are trivial
classifiers in which the output class is always predicted as negative
and positive, respectively, while the point (0, 1) represents perfect
classification. To compute the AUC we just need to obtain the area
of the graphic as

AUC ¼ 1þ TPrate�FPrate

2
ð2Þ

where TPrate is the ratio of examples of the positive class that are
well-classified and FPrate is the ratio of examples of the negative
class misclassified.
Table 1
Confusion matrix for a two-class problem.

Actual class Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)
3. Iterative instance adjustment for imbalanced domains:
IPADE-ID

In this section, we present and describe the proposed approach
in depth, denoted as IPADE for Imbalanced Domains (IPADE-ID).
IPADE-ID is influenced by the IG algorithm IPADE, having some
features in common with it like its iterative way of working or
the usage of adaptive evolutionary techniques to optimize the
instances generated up to now. Nevertheless, IPADE-ID features
several differences from its predecessor: IPADE-ID presents a new
initialization of the prototypes procedure, specifically designed for
the algorithm used as base learner; IPADE-ID uses a new evalua-
tion measure (AUC instead of accuracy); IPADE-ID modifies the
learning process of the positive class as it allows more optimiza-
tion steps only for this class and positive instances have more
influence on the final solution as they are not usually removed
from the final solution. Furthermore, the proposal can be used
with any learning algorithm as target classifier, having selected the
NN and C4.5 algorithms to be used within the method.

From the imbalanced classification point of view, we consider
the IPADE-ID a method more similar to data level approaches.
Specifically, it is a hybrid resampling method that obtains a
new training set (generated set GS, from the IG perspective) with
instances from the original training set and new generated
instances that are best positioned to cover properly the classes
space. IPADE-ID follows an iterative scheme, where it determines
the most appropriate number of instances per class and their
positioning for a determined classifier, focusing on the positive
class.

In particular, IPADE-ID is supported by three main operations:
1.
 Initialization of the prototypes: As an iterative procedure,
IPADE-ID needs an initial set of prototypes that describe the
initial state of the algorithm. It is important to select a good
initial set because they guide the search towards good solutions
and the prototypes that are selected in this stage are main-
tained or are slightly modified into the final generated training
set. Furthermore, the initialization process that provides
good prototypes for a specific classifier may not be adequate
for another classifier. Therefore, in Section 3.1 we explain the
initialization procedures used, focusing on a initialization
process based on decision trees that we have designed to use
IPADE-ID with C4.5.
2.
 Optimization of the prototypes: As a IG technique, the proto-
types that we currently have in the population can be improved
to better represent every class involved in the classification. It is
an interesting step that can create new prototypes in a data
area where there may not be any prototypes to obtain the
decision regions which can improve the final performance of
the model. In order to do so, we use differential evolution
techniques following the procedure described in Section 3.2.
3.
 Prototype Selection to extend the Generated Set: IPADE-ID
automatically decides how many prototypes are needed to
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represent each class, therefore, we need to incorporate a
procedure that enables this functionality. The procedure deci-
des if a class needs more prototypes to be properly represented
and searches for them in this case. In an imbalanced scenario is
important to pay attention to the positive class, therefore, we
focus on the selection of positive prototypes easing the selec-
tion conditions for this class prototypes. This process is fully
described in Section 3.3.

Fig. 4 depicts a flowchart of the IPADE-ID algorithm, outlining
its more general operations and delimiting its way of working. The
detailed structure of IPADE-ID is shown in Fig. 5, where we can
find the pseudocode of the model proposed. We will refer to the
number of instructions of the pseudocode shown in the following
sections.
3.1. Initialization of the prototypes based on decision trees

A random selection (stratified or not) of examples from TR may
not be the most adequate procedure to initialize the GS. Although
IPADE-ID iteratively learns instances to find the most appropriate
structure of GS, a good initialization process can lead the search to
better results specially when it is dependent on the target classifier.
Instruction 1 generates the initial solution GS depending on the
classifier. In this step, we have designed two different initialization
processes for NN and C4.5 respectively, so that, GS covers the entire
search space accordingly to its respective classifier.

On the first hand, in NN classification, we focus on the
initialization process that was satisfactorily used by the approaches
proposed in [19,62] and the original IPADE algorithm [22]. In these
works, GS initially covers each class with one instance, using its
respective centroid to represent each class distribution.

On the other hand, an initialization of GSwith an excessive small
number of instances can lead the C4.5 algorithm to poor perfor-
mances, damaging the IPADE-ID process. In previous experiments,
we observed that the C4.5 algorithm did not generate appropriate
rules if the size of GS was too small. For this reason, we have
designed an initialization process considering the behavior of C4.5.
It proceeds as follows:
TR
Initialization

of GS  

Choosing
target class

2nd. Addition of new instances 

3rd. Classifying test set

Gene
addin

Che
is

Build classification
model

Unt

GS

GS

TS 
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Fig. 4. Flowchart
1.
rate
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ckin
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of I
Build a model (a decision tree) with the C4.5 algorithm over the
original training data TR. This building step does not perform
the last pruning phase and does not try to stop the creation of a
leaf using a particular minimum number of instances. The aim
of this step is to cover the most interesting areas of the original
dataset according to the tree.
2.
 For each leaf, obtain its related instances of TR, that is, the instances
that were used to build the corresponding leaf. Then, for the
selected instances in each leaf compute its centroid instance.
3.
 Return the centroid instances of the leaves.

Depending on the problem addressed, we cannot be certain
that the centroid of the classes or leaves completely cover the
region associated to each class, avoiding misclassifications. Thus,
instruction 2 applies the first optimization stage using the initial
GS composed of centroids of classes or leaves. The optimization
stage modifies the instances of GS using the movement idea in the
D-dimensional space, adding or subtracting some quantities to the
attribute values of the instances. It is important to point out that
we normalize all attributes of the dataset to the [0, 1] range.

This initialization procedure enables the differential evolution
optimization to search for the best instances representation
for imbalanced domains. The intuition behind this operation is
to cover each class assigning points that occupy central positions
in the data space. In this manner, the samples initially selected
cover as many samples of each class as possible and it is the
optimization procedure which determines its validity and whether
an instance is better than the current selection or not. In this
manner, these initial samples are optimized towards the final
population where they are accompanied by new prototypes which
help to delimit the class regions as they improve the performance
of the trial set.

3.2. Differential evolution optimization for IPADE-ID

In this section we briefly describe the use of differential
evolution in IG techniques, which was proposed in [22], as
a position adjusting of instances scheme. In this work, the under-
lying idea of this process is extended to any learning algorithm.

First of all, it is necessary to explain the solution codification.
In this algorithm, each individual in the population encodes a
Positioning
optimization 

 a trial GS by
 new instance

Positioning
optimization

g if the trial GS
ter than GS 

pping criterion
atisfied 

GS
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Fig. 5. IPADE-ID algorithm basic structure.
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single instance without the class label and, as such, the dimension
of the individuals is equal to the number of attributes of the
specific problem.

The differential evolution algorithm uses each instance pu of
GS, provided by the IPADE-ID algorithm, as member of the initial
population. Next, mutation and crossover operators guide the
optimization of the positioning of each pu in the D-dimensional
space. It is important to point out that these operators only
produce modifications in the attributes of the instances of GS.
Hence, the class value remains unchangeable throughout the
evolutionary cycle. We will focus on the well-known DE/Curren-
tToRand/1 strategy to generate the trial instances p′

u because it has
reported the best behavior. It can be viewed as

p′
u ¼ pu þ K � ðpr1�puÞ þ F � ðpr2�pr3 Þ ð3Þ

where the scaling factor F is a positive control parameter for
scaling the different vectors. K is a random number from ½0;1�.
The examples pr1 , pr2 , pr3 are randomly extracted from TR and they
belong to the same class as pu. In the hypothetical case that TR
does not contain enough instances of the pu class, that is, there
is not at least three instances of this class in TR, we artificially
generate the necessary number of new instances prj , 1≤ j≤3, with
the same class label as pu, using little random perturbations such
as prj ¼ ðpu1 þ rand½�0:1; 0:1�; pu2 þ rand½�0:1;0:1�;…; pum þ rand
½�0:1;0:1�;CuÞ.

After applying this operator, we check if the values belong
to the interval [0, 1]. If a computed value is greater than 1, we
truncate it to 1, and if is lower than 0, we establish it at 0.

After the mutation process over all the instances of GS, we
obtain a trial solution GS′, which is constituted for each p′

u.
The selection operator decides which solution GS′ or GS should
survive for the next iteration. This step is dependent on the target
classifier. The corresponding fitness value is measured as the AUC
(Eq. (2)) obtained with the target classifier using GS to build the
corresponding learning model to classify the examples in TR (using
the leave-one-out validation scheme). We try to maximize this
value, so the selection operator can be viewed as follows:

GS¼ GS′ if AUCðGS′Þ≥AUCðGSÞ
GS Otherwise

�
ð4Þ

The success of differential evolution in solving a specific
problem crucially depends on choosing the appropriate control
parameter values. In order to guarantee a high quality solution,
we use the ideas established in [28] to obtain a self adaptive
algorithm. This method was established as the best differential
evolution technique for IG in [38]. Instruction 3 calculates the AUC
of the initial solution, which is computed using GS to build a model
that classifies the examples of TR. Note that a leave-one-out
validation scheme is performed, so that the examples in TR that
also belong to GS are discarded in the AUC computation.

3.3. Prototype selection to extend the generated set

After the first optimization process, IPADE-ID enters in an iterative
loop (Instructions 6-36) to determine which classes need more
instances to faithfully represent their class distribution, concentrating
on the positive class. In order to do this, we focus on local classifica-
tion accuracy as the mechanism to measure how a class is currently
represented. We define two types of classes. A class Ci is said to be
optimizable if it allows the addition of new instances to improve its
local classification accuracy. Initially, all classes are optimizable. IPADE-
ID allows the positive class to be optimizable OT times in order to
permit a better representation of its class distribution (generating
more instances), even if its local classification accuracy does not
improve. Thus, the optimizer has more iterations to obtain an
appropriate positioning of the instances.

The local accuracy of Ci is computed by classifying the examples
of TR whose class is Ci with the instances kept in GS (using the
respective classifier). The target class will be the optimizable class
with the least local accuracy registered as the class that is more



Table 2
Parameter specification for the algorithms tested in the experimentation.

Algorithm Parameters

SMOTE k¼5, distance¼Euclidean, balancing¼YES
SMOTE+ENN kSMOTE¼5, kENN¼3, distance¼Euclidean, balancing¼YES
NCL k¼5
IPADE-ID Iterations of Basic DE¼500, iterSFGSS¼8, iterSFHC¼20,

Fl¼0.1, Fu¼0.9, OT¼5

NN, NNCS,
KNN-ADAPTIVE,
KSNN

k¼1, distance¼Euclidean

C4.5, C4.5CS Pruned tree, confidence¼0.25, 2 examples per leaf
Ripper k¼2, grow set¼0.66, Number of fuzzy rules: 5 � d (max. 50

rules), number of rule sets: 200, Crossover probability: 0.9,
mutation probability: 1/d, number of replaced Rules: all rules
except the best-one (Pittsburgh-part, elitist approach) Number
of rules/5 (GCCL-part), total number of generations 1000, don't
Care probability 0.5, probability of the application of the GCCL
iteration 0.5

FH-GBML
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susceptible of being improved. From instructions 7–16, the algo-
rithm identifies the target class in each iteration. Initially, all
classes start as optimizable (Instruction 4) and the number of
optimization processes performed without improvement is initi-
alized to 0 (Instruction 5).

In order to reduce the classification error of the target class,
IPADE-ID extracts a random example of this class from TR and adds
this to the current GS in a new trial set GStrial (Instruction 20). This
addition forces the re-positioning of the instances of GStrial using
the optimization process again (Instruction 21). To evaluate the
goodness of GStrial, instruction 24 computes its corresponding
predictive AUC, building a model with GStrial and classifying the
examples of TR with a leave-one-out validation scheme.

After this process, we have to ensure that the new positioning
of instances of GStrial, generated with the optimizer, has reported
a successful improvement of the AUC rate with respect to the
previous GS. If the AUC of the GStrial is lesser than the AUC of GS,
IPADE-ID does not add this instance to GS and then, if the target
class corresponds with the positive class (and it has not been
optimized OT times), its number of iterations without improve-
ment is increased (Instruction 30), else the class is registered as
non-optimizable. If the addition of the new instance produces an
AUC improvement, the current GS is updated: GS¼ GStrial.

Note that the addition mechanism is not performed if the
target class corresponds to the positive class and in the previous
iteration the optimization process did not find a suitable position-
ing of the instances that improved the AUC of the current GS
(Instructions 17 and 18).

The stopping criterion is satisfied when the AUC is 1.0 or all the
classes are registered as non-optimizable. Finally, the adjusted
set of instances GS is used to classify the TS set with the target
classifier (Instruction 36).
4. Experimental framework

In this section, we present the set up of the experimental
framework used to develop the analysis of our proposal. We will
mention the algorithms selected for the comparison together with
their configuration parameters, the imbalanced datasets selected
and we will introduce the necessity of the usage of statistical tests.

4.1. Algorithms selected for the study and parameters

In order to test the performance of our approach, IPADE-ID, we
have selected representative methods that are used to deal with
imbalanced datasets to perform the experimental study. Since we have
chosen two learning methodologies, the NN rule [24] and
the C4.5 decision tree [25], we have also selected other related
strategies to each learning methodology in order to test the perfor-
mance of the proposal in a suitable context. The selected methods are:
�
 Resampling techniques: As resampling techniques used to deal with
the imbalanced classification problem, we have selected the SMOTE
algorithm [10], the SMOTE+ENN algorithm and the NCL technique.
�

3 http://www.keel.es/.
4 http://www.keel.es/datasets.php.
Cost-sensitive algorithms: As cost-sensitive solutions we have
chosen two specific cost-sensitive algorithms instead of a general
cost-sensitive framework related to the selected learning meth-
odologies: a NN cost-sensitive approach (NNCS) [63] and C4.5
Cost-Sensitive (C4.5CS) [64]. We have selected these approaches
as they make a specific classifier learning algorithm cost-sensitive,
including information in their inner way of running. It is inter-
esting to compare the results of these approaches with IPADE-ID
as the results of the proposal are dependent on the base classifier
used because its behavior is modified according to the selected
learner. To relate the behavior of cost-sensitive techniques with
the proposal we use an input cost-matrix with the following
values for the incorrect classification of instances: Cðþ;�Þ¼ IR
and Cð�;þÞ¼ 1.
�
 Advanced lazy learning algorithms: In order to compare the results
of the NN rule in imbalanced domains, we have also chosen several
advanced lazy learning algorithms that have a competitive perfor-
mance in balanced datasets: Center Nearest Neighbor Classifier
(CENTER-NN) [65], Adaptive KNN Classifier (KNN-ADAPTIVE) [66],
and K Symmetrical Nearest Neighbor Classifier (KSNN) [67]. We
compare the IPADE-ID-NN version of the proposal with advanced
lazy learning techniques using SMOTE as preprocessing algorithm
to check the validity of our proposal as it is dependent on the base
classifier used.
�
 Rule learning approaches for classification: As related classifiers to
the C4.5 algorithm that can be examined in contrast to it, we have
selected the Ripper [57] crisp rule learning generator and the
Fuzzy Hybrid Genetics-Based Machine Learning (FH-GBML) algo-
rithm [68]. We have chosen the combination of well-known rule
learners for classification with SMOTE preprocessing as suitable
competitors to the IPADE-ID-C4.5 proposal which is focused on
the obtaining of a good decision tree for the imbalanced dataset.

The configuration parameters used for these algorithms are shown
in Table 2. All the methods were run using KEEL software3 [69],
following the recommended parameter values given in the KEEL
platform to configure the methods, which were selected according
to the recommendation of the corresponding authors of each algo-
rithm, assuming that the choice of the values of the parameters was
optimal.

4.2. Datasets and data partitions

In order to analyze the quality of the proposal against the
algorithms introduced in the previous section, we have selected
several highly imbalanced datasets. As there is no consensus in the
literature about when a dataset is considered highly imbalanced, we
will consider that an IR above 9 represents a high IR in a dataset, due
to the fact that ignoring the minority class instances by a classifier
supposes an error of 0.1 in accuracy, which has poor relevance.
Therefore, we have selected 44 datasets from KEEL dataset repository4

[31] with an IR greater than 9. The data are summarized in Table 3,

http://www.keel.es/
http://www.keel.es/datasets.php


Table 3
Summary of highly imbalanced datasets.

Datasets #Ex. #Atts. Class (� ; +) %Class (� ; +) IR

ecoli034vs5 200 7 (p,imL,imU; om) (10.00, 90.00) 9.00
yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
ecoli067vs35 222 7 (cp,omL,pp; imL,om) (9.91, 90.09) 9.09
ecoli0234vs5 202 7 (cp,imS,imL,imU; om) (9.90, 90.10) 9.10
glass015vs2 172 9 (build-win-non_float-proc,tableware, (9.88, 90.12) 9.12

build-win-float-proc; ve-win-float-proc)
yeast0359vs78 506 8 (mit,me1,me3,erl; vac,pox) (9.88, 90.12) 9.12
yeast02579vs368 1004 8 (mit,cyt,me3,vac,erl; me1,exc,pox) (9.86, 90.14) 9.14
yeast0256vs3789 1004 8 (mit,cyt,me3,exc; me1,vac,pox,erl) (9.86, 90.14) 9.14
ecoli046vs5 203 6 (cp,imU,omL; om) (9.85, 90.15) 9.15
ecoli01vs235 244 7 (cp,im; imS,imL,om) (9.83, 90.17) 9.17
ecoli0267vs35 224 7 (cp,imS,omL,pp; imL,om) (9.82, 90.18) 9.18
glass04vs5 92 9 (build-win-float-proc,containers; tableware) (9.78, 90.22) 9.22
ecoli0346vs5 205 7 (cp,imL,imU,omL; om) (9.76, 90.24) 9.25
ecoli0347vs56 257 7 (cp,imL,imU,pp; om,omL) (9.73, 90.27) 9.28
yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
ecoli067vs5 220 6 (cp,omL,pp; om) (9.09, 90.91) 10.00
vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non_float-proc,headlamps)
glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
ecoli0147vs2356 336 7 (cp,im,imU,pp; imS,imL,om,omL) (8.63, 91.37) 10.59
led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9; 1) (8.35, 91.65) 10.97
glass06vs5 108 9 (build-win-float-proc,headlamps; tableware) (8.33, 91.67) 11.00
ecoli01vs5 240 6 (cp,im; om) (8.33, 91.67) 11.00
glass0146vs2 205 9 (build-win-float-proc,containers,headlamps, (8.29, 91.71) 11.06

build-win-non_float-proc;ve-win-float-proc)
ecoli0147vs56 332 6 (cp,im,imU,pp; om,omL) (7.53, 92.47) 12.28
cleveland0vs4 177 13 (0; 4) (7.34, 92.66) 12.62
ecoli0146vs5 280 6 (cp,im,imU,omL; om) (7.14, 92.86) 13.00
ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non_float-proc,headlamps)
shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.50
yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87
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wherewe denote the number of examples (#Ex.), number of attributes
(#Atts.), class name of each class (positive and negative), class attribute
distribution and IR. This table is in ascending order according to the IR.

To develop the different experiments we consider a 5-fold
stratified cross-validation model, for instance, 5 random partitions
of data with a 20% maintaining the a priori probabilities of each
class and the combination of 4 of them (80%) as training and the
remaining ones as test. For each dataset we consider the average
results of the five partitions. The datasets used in this study
use the partitions provided by the KEEL dataset repository in the
imbalanced classification dataset section.5

4.3. Statistical tests for performance comparison

In order to support the analysis of the results obtained through
an experimentation process, we use hypothesis testing techniques
to find significant differences between the studied methods [70].
We consider the use of non-parametric tests, according to the
recommendations made in [33,34,70] where a set of simple, safe
5 http://www.keel.es/imbalanced.php.
and robust non-parametric tests for statistical comparisons of
classifiers is presented. Specifically, we use non-parametric tests
due to the fact that the initial conditions that guarantee the
reliability of the parametric tests may not be satisfied, causing
the statistical analysis to lose credibility [71].

The interesting comparisons that can be made from our
experimental study involve the use of the Iman-Davenport test,
which is in charge of the detection of statistical differences among
a group of results, and the Holm post-hoc test in order to find
which algorithms are distinctive among a 1�n comparison. A
post-hoc procedure allows us to know whether a hypothesis of
comparison of means could be rejected at a specified level of
significance α. Nevertheless, it is quite interesting to compute the
p-value associated with each comparison, which represents the
lowest level of significance of a hypothesis that results in a
rejection. That is the adjusted p-value. In this manner, we can
know whether two algorithms are significantly different and how
different they are. We also obtain the average ranking of the
algorithms, according to the Friedman procedure, which tries to
show the performance of an algorithm with respect to the others
and is based on the ranking of the algorithms in each dataset.

http://www.keel.es/imbalanced.php


Table 4
Detailed results table for the algorithms used in imbalanced datasets. Only test results are shown.

Dataset SMOTE+NN SMOTE+ENN+NN NCL+NN NNCS SMOTE+
CENTER-NN

SMOTE+
KNN-ADAPTIVE

SMOTE+KSNN IPADE-ID-NN SMOTE+C4.5 SMOTE+
ENN+C4.5

NCL+C4.5 C4.5CS SMOTE+
Ripper

SMOTE+
FH-GBML

IPADE-ID-C4.5

ecoli034vs5 0.8472 0.8472 0.8639 0.8806 0.8417 0.8556 0.8500 0.9000 0.9000 0.8806 0.8056 0.9250 0.8778 0.8944 0.8833
yeast2vs4 0.8807 0.8828 0.8915 0.8785 0.8089 0.8758 0.8807 0.9424 0.8588 0.9042 0.8670 0.8866 0.8703 0.9073 0.9118
ecoli067vs35 0.8625 0.8600 0.8800 0.8725 0.8700 0.8700 0.8575 0.8350 0.8500 0.8125 0.8400 0.8825 0.8450 0.8125 0.8325
ecoli0234vs5 0.8530 0.8780 0.8613 0.8725 0.8337 0.8585 0.8502 0.9002 0.8974 0.8947 0.8557 0.8334 0.8643 0.8572 0.9197
glass015vs2 0.6573 0.6906 0.7573 0.6315 0.7500 0.5992 0.6540 0.6476 0.6772 0.7957 0.6599 0.6035 0.6890 0.6008 0.7559
yeast0359vs78 0.7543 0.7588 0.7444 0.7413 0.7006 0.7382 0.7576 0.7095 0.7047 0.7024 0.6394 0.6765 0.6784 0.7226 0.7255
yeast02579vs368 0.9044 0.9138 0.8946 0.8866 0.8318 0.9154 0.9044 0.8966 0.9143 0.9138 0.8460 0.8996 0.8812 0.9099 0.8930
yeast0256vs3789 0.7807 0.7860 0.8059 0.7645 0.7271 0.7883 0.7840 0.8001 0.7951 0.7817 0.7453 0.7846 0.7559 0.7851 0.7810
ecoli046vs5 0.8642 0.8838 0.8669 0.8864 0.8646 0.8669 0.8642 0.8980 0.8701 0.8869 0.8364 0.8310 0.9119 0.8326 0.9033
ecoli01vs235 0.8286 0.8536 0.8495 0.8755 0.8400 0.8845 0.8264 0.8982 0.8377 0.8332 0.7645 0.7641 0.8059 0.8075 0.8559
ecoli0267vs35 0.8976 0.8926 0.8326 0.9325 0.8326 0.8801 0.8976 0.8252 0.8155 0.8179 0.8102 0.8527 0.8478 0.8331 0.8228
glass04vs5 0.9691 0.9629 0.9007 0.9695 0.9574 0.9754 0.9691 0.9441 0.9816 0.9754 0.9941 0.9941 0.9757 0.9673 0.9941
ecoli0346vs5 0.8838 0.8838 0.8919 0.8811 0.8838 0.8811 0.8838 0.8453 0.8980 0.8980 0.8196 0.8507 0.9264 0.8331 0.8311
ecoli0347vs56 0.8834 0.9034 0.8963 0.9119 0.8655 0.8941 0.8834 0.9120 0.8568 0.8546 0.7536 0.7586 0.8773 0.8600 0.9253
yeast05679vs4 0.7753 0.7969 0.7835 0.7845 0.6663 0.7590 0.7774 0.7839 0.7602 0.7802 0.7533 0.7243 0.7408 0.8064 0.8117
ecoli067vs5 0.8675 0.8300 0.8475 0.8900 0.8450 0.8825 0.8675 0.8450 0.8475 0.8450 0.8850 0.8825 0.8500 0.8338 0.8775
vowel0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9944 1.0000 0.9488 0.9505 0.9455 0.9583 0.9422 0.9578 0.9561 0.9805
glass016vs2 0.6814 0.6119 0.6262 0.6474 0.6893 0.6183 0.6814 0.6564 0.6062 0.6388 0.6288 0.6155 0.6371 0.6343 0.7755
glass2 0.6447 0.6346 0.6653 0.6260 0.7247 0.6111 0.6472 0.6578 0.6390 0.7457 0.5557 0.6416 0.6217 0.6771 0.7665
ecoli0147vs2356 0.8507 0.8674 0.8707 0.8507 0.8023 0.8771 0.8523 0.8890 0.8277 0.8228 0.8385 0.8772 0.9027 0.8508 0.8890
led7digit02456789vs1 0.8108 0.8283 0.5143 0.8337 0.7506 0.8502 0.8621 0.8698 0.8908 0.8379 0.8776 0.8436 0.8502 0.8839 0.8802
glass06vs5 0.9400 0.9900 0.9900 0.9800 0.9300 0.9950 0.9300 0.9400 0.9147 0.9647 0.9950 0.9950 0.9545 0.9320 0.9950
ecoli01vs5 0.8545 0.8818 0.8636 0.9045 0.8455 0.8614 0.8523 0.9136 0.7977 0.8250 0.8386 0.8182 0.9136 0.8989 0.8318
glass0146vs2 0.6453 0.6426 0.6428 0.6321 0.7987 0.6465 0.6452 0.7019 0.7842 0.7095 0.5959 0.6797 0.6250 0.7064 0.8500
ecoli0147vs56 0.8756 0.8923 0.9054 0.9058 0.8988 0.9070 0.8756 0.8889 0.8592 0.8424 0.8702 0.8539 0.8559 0.8045 0.8824
cleveland0vs4 0.8543 0.8543 0.8325 0.8719 0.8543 0.7937 0.8573 0.8923 0.7878 0.7512 0.7185 0.6823 0.7090 0.7520 0.7285
ecoli0146vs5 0.8481 0.8731 0.8596 0.8808 0.8481 0.8615 0.8481 0.8865 0.8981 0.8981 0.7865 0.8385 0.8615 0.9202 0.9135
ecoli4 0.9171 0.9123 0.8623 0.9357 0.8778 0.9187 0.9171 0.9171 0.7794 0.9044 0.8687 0.8636 0.8842 0.9302 0.8842
yeast1vs7 0.7479 0.7255 0.6902 0.7145 0.7129 0.7150 0.7514 0.7206 0.7003 0.7371 0.6015 0.6139 0.9997 0.7191 0.6529
shuttle0vs4 0.9960 0.9960 0.9960 1.0000 0.9957 1.0000 0.9960 0.9960 0.9997 0.9997 0.9997 0.9997 0.6583 0.9980 1.0000
glass4 0.8917 0.9101 0.8892 0.8818 0.8442 0.8492 0.8917 0.8918 0.8867 0.8650 0.8700 0.8431 0.8967 0.8867 0.8300
page-blocks13vs4 0.9977 0.9777 0.9800 1.0000 0.9989 0.9800 0.9955 0.9620 0.9955 0.9910 0.9955 0.9789 0.9888 0.9515 0.9788
abalone9-18 0.6820 0.6947 0.6916 0.7236 0.6859 0.6515 0.6827 0.7804 0.6283 0.7193 0.7021 0.6126 0.5303 0.7165 0.6859
glass016vs5 0.8771 0.8800 0.9300 0.9157 0.9186 0.8886 0.8743 0.8943 0.8129 0.8629 0.9857 0.9886 0.9486 0.8993 0.8943
shuttle2vs4 1.0000 1.0000 0.9500 0.9920 1.0000 1.0000 0.9960 0.9460 0.9917 1.0000 1.0000 1.0000 0.9958 0.9940 1.0000
yeast1458vs7 0.6390 0.6912 0.6305 0.6702 0.6104 0.5766 0.6443 0.6357 0.5367 0.5563 0.4925 0.5540 0.6315 0.6287 0.6344
glass5 0.8829 0.8707 0.9280 0.9256 0.8829 0.7902 0.8829 0.8854 0.8805 0.7756 0.9378 0.9427 0.9329 0.7671 0.9976
yeast2vs8 0.8055 0.7969 0.8131 0.7915 0.7577 0.7935 0.7816 0.7783 0.8338 0.8197 0.6250 0.8652 0.8457 0.7442 0.7002
yeast4 0.7242 0.7607 0.7552 0.7923 0.7321 0.6887 0.7259 0.8073 0.7121 0.7257 0.6967 0.7222 0.7642 0.8137 0.8167
yeast1289vs7 0.6444 0.6594 0.5722 0.7008 0.6056 0.5831 0.6460 0.7382 0.6832 0.6332 0.5273 0.6769 0.7365 0.7238 0.6841
yeast5 0.9326 0.9503 0.9347 0.9344 0.8698 0.8931 0.9326 0.9476 0.9337 0.9406 0.9035 0.9330 0.9323 0.9469 0.9424
ecoli0137vs26 0.8281 0.8281 0.8391 0.8208 0.8263 0.8409 0.8281 0.8727 0.8136 0.8136 0.8481 0.8281 0.7922 0.8236 0.7208
yeast6 0.7998 0.8351 0.8161 0.8472 0.8084 0.7955 0.8001 0.8562 0.8294 0.8270 0.7785 0.8082 0.8208 0.8646 0.8384
abalone19 0.5176 0.5135 0.5063 0.5900 0.5191 0.4986 0.5183 0.6574 0.5205 0.5166 0.5000 0.5701 0.7063 0.6708 0.5519

Mean 0.8272 0.8342 0.8210 0.8416 0.8161 0.8183 0.8278 0.8435 0.8172 0.8238 0.7925 0.8122 0.8262 0.8263 0.8416
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Table 5
Average Friedman rankings and adjusted p-values using Holm's post-hoc procedure
for the NN versions compared in the study.

Algorithm Average Friedman ranking Adjusted p-value

IPADE-ID-NN 3.5682
NNCS 3.6364 0.8961
SMOTE+ENN+NN 4.0341 0.7446
NCL+NN 4.3295 0.4346
SMOTE+KSNN 4.8750 0.0577
SMOTE+KNN-ADAPTIVE 4.8977 0.0577
SMOTE+NN 4.9205 0.0577
SMOTE+CENTER-NN 5.7386 0.0002

Table 6
Average runtime (seconds) of versions compared in
this study.

Algorithm Average runtime

IPADE-ID-NN 11.31
NNCS 21.39
SMOTE+ENN+NN 5.84
NCL+NN 6.59
SMOTE+KSNN 14.27
SMOTE+KNN-ADAPTIVE 14.32
SMOTE+NN 4.55
SMOTE+CENTER-NN 18.07

Table 7
Average Friedman rankings and adjusted p-values using Holm's post-hoc procedure
for the rule learning versions compared in the study.

Algorithm Average Friedman ranking Adjusted p-value

IPADE-ID-C4.5 2.8750
SMOTE+FH-GBML 3.7159 0.0679
SMOTE+Ripper 3.8636 0.0637
SMOTE+ENN+C4.5 4.0227 0.0381
SMOTE+C4.5 4.0909 0.0332
C4.5CS 4.4432 0.0033
NCL+C4.5 4.9886 0.0000
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These tests are suggested in the studies presented in [33,34,70],
where their use in the field of machine learning is recommended. For
a wider description of the use of these tests, refer to the website on
Statistical Inference in Computational Intelligence and Data Mining.6
5. Experimental results and analysis

In this section, we present the empirical analysis of the proposed
IPADE-ID algorithm in order to determine its robustness in a scenario
of highly imbalanced datasets. We divide the study in several parts: a
first one devoted to the results of IPADE-ID using the NN rule in its
way of working (Section 5.1), and a second part with the results of the
proposal using the C4.5 decision tree as classifier (Section 5.2). Finally,
a study on the impact of the data modification that some of the
algorithms perform is included in Section 5.3.

5.1. Analysis of IPADE-ID using the NN rule

The following part of the study will consider the performance of
the IPADE-ID algorithm using the NN rule as learning method, in
contrast with several solutions provided to deal with imbalanced
datasets and other lazy learning approaches. Table 4 shows the
average AUC results in test for each of the methods tested in every
selected dataset, namely, the basic NN rule using SMOTE, SMOTE+ENN
and NCL; the NN cost-sensitive version; Center-NN; KNN-Adaptive;
KSNN; and the proposed IPADE-ID-NN. Note that the advanced lazy
learning algorithms (CENTER-NN, KNN-ADAPTIVE and KSNN) use
SMOTE preprocessing not to be in disadvantage due to the imbalance.
The best result per dataset is highlighted in bold.

Taking a quick glance at this table shows that the best
performing method in average over the highly imbalanced data-
sets is the proposal IPADE-ID-NN. However, we need to check if
this supposition can be supported by non-parametric statistical
tests. We first use an Iman-Davenport test to check if there are
differences between the performance of the algorithms.
6 http://sci2s.ugr.es/sicidm/.
The p-value (0.0001) that is computed is low enough to reject the
null equality hypothesis with a high confidence level. Therefore, as
we know there are significant differences, we proceed with the
application of the post-hoc procedure. In Table 5 we can see the
average ranks of the algorithms and the adjusted p-values that were
calculated using Holm's post-hoc procedure. As we expected, IPADE-
ID-NN obtains the lower ranking of the algorithms used which turns
our proposal into the control method. The adjusted p-values asso-
ciated to all the methods that have been preprocessed using the
SMOTE algorithm are low enough to reject the null-hypothesis with a
high confidence level (highlighted in bold). The other approaches,
where the null-hypothesis is not rejected, introduce NN components
in the previous sampling step which indirectly increases the final
performance when using NN as basic classifier.

Table 6 shows the average runtime7 of the comparison algo-
rithms over all the considered datasets. Despite of its evolutionary
nature, we can observe that IPADE-ID is very competitive in terms
of efficacy when the NN rule is used as target classifier.
5.2. Analysis of IPADE-ID using the C4.5 decision tree

In this second step of the study, we will compare the perfor-
mance of the IPADE-ID algorithm using the C4.5 decision tree as
learning method with well-known solutions used to solve the
imbalanced classification problem and other rule learning solu-
tions. In Table 4 the average AUC results in test for each of the
methods tested are shown. Specifically the methods presented
are the basic C4.5 decision tree used in combination with
SMOTE, SMOTE+ENN and NCL; C4.5 Cost-Sensitive; Ripper using
SMOTE preprocessing; FH-GBML with datasets preprocessed
with SMOTE; and the proposed IPADE-ID-C4.5. The best result
per dataset is highlighted in bold, as in the previous section.

The results table reveals a similar situation as in the previous
case: the proposal IPADE-ID-C4.5 is the method that obtains the
best average AUC value over all the tested datasets. Once again, we
need to validate the performance of our proposal using statistical
tests. We start computing the p-value (0.0004) associated to the
Iman-Davenport test, which is low enough to reject the null-
hypothesis with a high confidence level. Consequently, we apply
Holm's post-hoc procedure in order to categorize the differences
between algorithms. Table 7 shows the average Friedman ranks of
the algorithms and the adjusted p-values computed by the afore-
mentioned post-hoc procedure. Following our intuitions, IPADE-
ID-C4.5 obtains the best ranking among the algorithms becoming
the control method. As all the adjusted p-values are sufficiently
low to reject the null-hypothesis in all cases, the assumption
where IPADE-ID-C4.5 is the best performing method considered
for highly imbalanced datasets is reinforced.
7 These results have been obtained with an Intel(R) Core(TM) i7 CPU 920 at
2.67 GHz.

http://sci2s.ugr.es/sicidm/
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Table 8 presents the average runtime of IPADE-ID-C4.5 over all the
considered datasets in comparison with the rest of rule learning
algorithms. In this case, IPADE-ID is slower than most of the
comparison algorithms. As we stated in Section 3.1, C4.5 needs more
prototypes in GS to generate appropriate rules, and therefore, the
optimization process takes more time. Nevertheless, this additional
computation time is admissible considering the AUC achieved.
Table 9
IR of the techniques that modify the TR.

Dataset Original data SMOTE SMOT

ecoli034vs5 9.0000 1.0000 1.005
yeast2vs4 9.0800 1.0000 1.029
ecoli067vs35 9.0900 1.0000 1.026
ecoli0234vs5 9.1000 1.0000 1.012
glass015vs2 9.1200 1.0000 1.067
yeast0359vs78 9.1200 1.0000 1.027
yeast02579vs368 9.1400 1.0000 1.005
yeast0256vs3789 9.1400 1.0000 1.027
ecoli046vs5 9.1500 1.0000 1.028
ecoli01vs235 9.1700 1.0000 1.012
ecoli0267vs35 9.1800 1.0000 1.027
glass04vs5 9.2200 1.0000 1.021
ecoli0346vs5 9.2500 1.0000 1.002
ecoli0347vs56 9.2800 1.0000 1.008
yeast05679vs4 9.3500 1.0000 1.046
ecoli067vs5 10.0000 1.0000 1.056
vowel0 10.1000 1.0000 1.000
glass016vs2 10.2900 1.0000 1.069
glass2 10.3900 1.0000 1.1399
ecoli0147vs2356 10.5900 1.0000 1.013
led7digit02456789vs1 10.9700 1.0000 1.246
glass06vs5 11.0000 1.0000 1.015
ecoli01vs5 11.0000 1.0000 1.030
glass0146vs2 11.0600 1.0000 1.063
ecoli0147vs56 12.2800 1.0000 1.055
cleveland0vs4 12.6200 1.0000 1.006
ecoli0146vs5 13.0000 1.0000 1.034
ecoli4 13.8400 1.0000 1.021
yeast1vs7 13.8700 1.0000 1.0418
shuttle0vs4 13.8700 1.0000 1.000
glass4 15.4700 1.0000 1.071
page-blocks13vs4 15.8500 1.0000 1.004
abalone9-18 16.6800 1.0000 1.1058
glass016vs5 19.4400 1.0000 1.007
shuttle2vs4 20.5000 1.0000 1.029
yeast1458vs7 22.1000 1.0000 1.035
glass5 22.8100 1.0000 1.047
yeast2vs8 23.1000 1.0000 1.054
yeast4 28.4100 1.0000 1.069
yeast1289vs7 30.5600 1.0000 1.025
yeast5 32.7800 1.0000 1.025
ecoli0137vs26 39.1500 1.0000 1.003
yeast6 39.1500 1.0000 1.046
abalone19 128.8700 1.0000 1.035

Mean 17.4350 1.0000 1.038

Table 8
Average Runtime (seconds) of versions compared
in this study.

Algorithm Average runtime

IPADE-ID-C4.5 386.57
SMOTE+FH-GBML 11809.61
SMOTE+Ripper 24.07
SMOTE+ENN+C4.5 19.86
SMOTE+C4.5 18.61
C4.5CS 7.80
NCL+C4.5 9.48
5.3. Analysis of the data used at the classification step

In this part of the study, our aim is to show how the original
data used to classify is modified by certain algorithms. This
information is very interesting in an imbalanced scenario as
standard classifiers behavior is not heavily deteriorated when
the data used to build the classification model is somehow
balanced. We aim to understand how some of the algorithms
used in the study alter the original data and see if the data
distribution has an impact on the final performance of the
classifiers. Table 9 shows the resulting IR, in each dataset, of all
the techniques that modify the original TR. For IPADE-ID, the
obtained GS is analyzed, comparing the number of instances
belonging to the majority and minority classes.

Observing this table, we can observe the following conducts:
�

E-E

6
1
0
6
1
6
4
6
2
8
1
9
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8
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8
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0

3
2
6
7
8
4
4
0
2

6
0
5

3
3
5
4
9
5
6
3
7
4
3

8

SMOTE produces balanced datasets as expected with the
parameter setup used. SMOTE+ENN tends to remove more
positive instances than negative ones (in proportion), therefore,
its IR is slightly higher than the obtained with SMOTE.
�
 Since NCL is based on a data reduction process of the majority
class, its IR is very similar to the original data.
NN NCL IPADE-ID-NN IPADE-ID-C45

8.1250 1.1667 3.3571
7.8775 4.2000 8.4800
7.7159 0.3333 0.8889
8.1500 0.3750 1.7027
6.3235 2.0000 0.6667
6.7500 0.3333 1.0000
8.2626 1.2143 1.6250
7.4975 1.4545 2.3061
8.2000 2.0833 0.7692
7.8125 0.6667 1.3846
7.7500 0.8667 1.6552
7.8333 1.0000 1.5424
8.3625 0.8182 1.4800
8.3300 2.5455 2.3913
7.5196 0.4118 1.5000
8.6375 0.2632 3.1000
9.8500 0.5556 1.1458
7.3676 0.9231 1.4074
8.4265 1.0000 44.8000
9.4914 0.5000 2.0000
9.7973 2.4286 1.2791
9.3333 2.7143 3.8125
9.9875 1.0000 1.5833
7.8971 1.0000 1.9200
11.4200 5.4000 2.6667
10.6538 3.6250 1.3030
11.9750 0.8333 1.1852
14.9375 0.8462 1.3714
11.4917 3.1000 7.3333
13.8293 1.5000 1.6842
13.5769 1.8889 2.3333
15.5179 1.0000 1.3103
13.1071 0.3571 0.6970
17.6944 0.7692 1.1250
18.6250 1.4706 1.0702
18.4667 0.3846 1.5263
20.7500 0.5000 1.2667
21.1375 1.5000 2.3043
25.5490 0.4167 0.6875
26.8083 1.4615 3.0417
31.6477 2.3000 1.6591
37.2857 1.2500 5.2500
39.4571 0.4167 1.3182

124.7891 1.7778 2.8780

15.8186 1.3784 3.0411



V. López et al. / Neurocomputing 126 (2014) 15–2826
�
 In general, the IPADE-ID scheme does not need to balance
classes to obtain good generalization results. The generated
dataset is very dependent of the problem tackled and the used
classifier, so that the corresponding IR is not related to the
original IR. It is noteworthy that in many problems, the IPADE-
ID algorithm generates more positives instances with respect to
the negative ones because it is the most complex class.
�
 The main difference between IPADE-ID-NN and IPADE-ID-C4.5
is that the NN version is more balanced. It means that C4.5
needs more instances in the negative class to represent its
decision boundaries.

To sum up, our experimental study has shown that IPADE-ID is
an algorithm that presents a good performance in the scenario of
highly imbalanced datasets. The integration of instance generation
techniques in a resampling step produces an improvement of
the results in this unfavorable scenario. Furthermore, the method
has shown its robustness with two different learning paradigms,
taking into consideration the features of the learning methods into
the way of working of the proposal.

6. Concluding remarks

In this paper, we have presented IPADE-ID, a new approach to
deal with the problem of classification with highly imbalanced
datasets. The proposal provides a solution that modifies the
training set using a IG technique based on differential evolution
as base for the procedure, adapting its way of working to this
imbalanced scenario. As learning methods, we have selected the
NN rule and the C4.5 decision tree and we have adapted the
IPADE-ID approach according to these methods behavior.

The experimental study performed has shown that the usage of
instance generation techniques to deal with highly imbalanced
datasets can be taken into consideration as a valid solution to this
problem. IPADE-ID has demonstrated its good behavior in an
exhaustive comparison with methodologies that are used to solve
this problem such as resampling techniques or cost-sensitive
solutions. The proposal outperforms the other approaches in the
scenario of highly imbalanced datasets, which usually is a scenario
where most algorithms have lots of difficulties to perform prop-
erly. On the other hand, the proposal obtains a good performance
using different techniques as learning methods, which makes it
extensible to other learning paradigms and permits a further
adaptation of the presented proposal into more powerful solutions
that adapt the procedure at the algorithm level.
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